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Abstract
We study the nonergodic dynamics of the Ising spin anti-Hebbian model.
The mean-field method for Glauber dynamics is reviewed in our context.
The resulting one-site problem is described by the memory and noise term,
which are expressed by the large-scale convolutions of correlation and response
functions. These memory and noise terms are governed by the relation similar
to the generalized fluctuation–dissipation relation of nonergodic dynamics.
The results of replica method are recovered by studying the onset of very slow
dynamics.

PACS numbers: 05.20.−y, 05.40.−a, 75.10.Nr

1. Introduction

Glassy systems are attractive subjects in the recent study of statistical physics [1, 2]. Since
the problem is related to the nonergodicity of the system, the theory should be based on the
dynamical equation [3], which is far more difficult than the study based on the Gibbs measure.
Recently, the nonergodic dynamics of the continuous spin model, such as the spherical
p-spin (SPS) model, was directly studied by Langevin equation and gives quite interesting
and suggestive results [4]. Especially, it was clarified that the correlation and response
functions satisfy a remarkable relation, which is called generalized fluctuation–dissipation
(GFD) relation [5–7]. Thanks to this relation, the study of the dynamics is simplified greatly.
On the other hand, replica method, which is based on the Gibbs measure, gives fruitful idea
on the property of complicated energy landscape [8]. These two approaches often give similar
results in the mean-field theory, although they start with different formulations. Some authors
suggested that there is a deep relation between these two approaches apart from mean-field
theory [9].

In the study of statistical physics, Ising spin models have been very important. With
discrete spin variables, the stochastic dynamics should be controlled by Glauber dynamics [10].
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In spite of the expected generality of nonergodic dynamics, the situation of such models is
not so clear, although some special spin models were studied by mean-field method based
on Glauber dynamics [5]. We are especially interested in the dynamics of the infinite range
Ising spin models with two-body interactions, which have been studied intensively by replica
method and simulations [11–13]. Interestingly, in the framework of replica theory, it was
suggested that dynamical phase transition can be identified by studying the marginally stable
one-step replica symmetry breaking (RSB) solution. This seems to describe the numerical
simulations correctly. Recently, this idea was applied to the anti-Hebbian (AH) model [14] and
long-range anti-ferromagnetic spin models to identify the dynamical phase transition [15, 16].
The AH model is defined by reversing the sign of interactions of the Hopfield model. For some
parameter region, the AH model has glassy low-temperature phase, which is quite different
from the spin-glass state of the Sherrigton–Kirkpatrick (SK) model [17]. This difference is
formally characterized by the different behaviour of the solutions of replica method. We expect
that the property of replica solution will provide good references in the study of dynamics of
these models.

The purpose of this paper is to study the mean-field method for the Glauber dynamics of
the AH model at low temperature. Main interest is on the structure of the effective one-site
problem characterized by two-body interactions, which will induce rather involved memory
and noise terms in the effective one-site problem. We will study how the GFD relation works
to find the result which corresponds to replica theory. We also discuss the large time-scale
property of the self-consistent equation by assuming a simple form on the correlation and
response functions. For Ising Glauber dynamics, we mainly follow the formulation presented
in [5].

This paper is organized as follows. In section 2, we review the Glauber dynamics of
the Ising spin models and evaluate the quenched averages over interactions, which give a
one-site problem with memory and noise terms. In section 3, we discuss the solutions for
slow dynamics and discuss the relation with replica method. We also discuss the fluctuation–
dissipation (FD) relation for the memory and noise terms, which plays a very important role
in our calculations. In section 4, we discuss the long time dynamics with some speculations.
Section 5 is devoted to some discussions.

2. Basic formulation

This section is devoted to the description of the AH model, glauber dynamics and mean-field
method, following the standard formulation.

2.1. Glauber dynamics of Ising spin models

The infinite range Ising spin models are defined by N Ising spin σi = ±1 (i = 1, 2, . . . , N ,
where N is a system size) and interactions Jij . The energy function is given by

E = −1

2

∑
i �=j

Jij σiσj −
∑

i

ηiσi, (2.1)

where ηi are external fields on site i. For the AH model, the interactions are given by

Jij = − 1

N

P∑
µ=1

ξ
µ

i ξ
µ

j , (2.2)

where ξ
µ

i are quenched random variables which take ±1 with probability 1/2. Note the minus
sign in (2.2). For α = P/N smaller than 1.4, replica method implies that this model has a
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dynamical phase transition. We can also see that the model reduces to the SK model in the
large α limit by studying the correlation among Jij . We will see this later.

Glauber dynamics is a stochastic process in which the probability of spin configuration,
{σi}, P {σi}, obeys the dynamical equation given by

dP {σi}
dt

=
∑
{σ ′

i }
W({σi}, {σ ′

i })P {σ ′
i } (2.3)

where

W({σi}, {σ ′
i }) =

∑
i

wi(σi, σ
′
i ) (2.4)

The matrices wi(σi, σ
′
i ) control the spin flip on site i. It is a function of energy change caused

by the spin flip σ ′
i → σi . In Ising spin models, the energy changes are given by the twice of

local fields h′
i = ηi(t) +

∑
j Jij σ

′
j , where ηi(t) are assumed to be time dependent. The

details of wi(σi, σ
′
i ) will not matter much as long as it gives the thermal equilibrium

states described by Gibbs–Boltzmann distribution at least with time-independent ηi(t) and in
high-temperature. The typical form of the matrix will be

wi(σi, σ
′
i ) = 1

2 (−σiσ
′
i ){1 − σ ′

i tanh(βh′
i )} (2.5)

where β = T −1 is an inverse temperature.
To discuss the evolution equations, it is convenient to introduce the quantum-mechanics-

like formulation [18], which suggests

wi(t) =
∑
σi ,σ

′
i

|σi〉wi(σi, σ
′
i )〈σ ′

i |, (2.6)

where |σi〉 are orthogonal state vectors. For the whole system, we introduce direct products of
one-site vectors and define W(t) = ∑

i wi(t). Then, the formal solution of (2.3) is given by
the time-ordered product of (1 + dtW(t)). Introducing the state-vector representation |P(t)〉
for the whole system, we have

|P(t)〉 = U(t, 0)|P(0)〉 (2.7)

where

U(t ′′, t ′) = T exp
∫ t ′′

t ′
W(t) dt, (2.8)

where T means a time-ordered product. The correlation and response functions are defined by

Ci(t, t
′) = 〈σi(t)σi(t

′)〉
Gi(t, t

′) = ∂〈σi(t)〉
∂ηi(t ′)

where

〈· · ·〉 = 〈1|T · · · U(∞, 0)|P(0)〉
where 〈1| means a vector with equal weight for all component. Time variable t in σi(t) simply
indicates the place where σi should be located.

For the thermal equilibrium state, wi(t)|P(t)〉 = 0, we can show the fluctuation–
dissipation relation

Gi(t, t
′) = βθ(t − t ′)

∂Ci(t, t
′)

∂t ′
(2.9)

by using ∂tσi(t) = σi(t)wi(t) − wi(t)σi(t) and ∂wi(t)/∂ηi(t) = −β(wi(t)σi(t) +
tanh(βhi)wi(t)). Since relation (2.9) is independent of the realization of interactions, it
should hold after quenched average over Jij at least in the paramagnetic phase.
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2.2. Averages over quenched random interactions

This subsection is devoted to the derivation of the mean-field one-site problem. The details
are found in appendix A. We first rewrite the evolution equation in the form

U(t, 0) =
∫

U(t, 0, {h})H {h}
∏
t ′,i

dhi(t
′) (2.10)

where the distribution function of local fields H {h} is defined by

H {h} =
∏
t,i

δ(hi(t) − ηi(t) −
∑
j �=i

Jij σj (t)) (2.11)

where δ(x) is a delta function. Denoting the averages over quenched interactions by [· · ·] and
introducing the integral representations for delta functions [19], we have

[H {h}]
∏
t ′,i

dhi(t
′) =

∫
D{h, h̄}


exp

∑
i<j

Jij	ij


 exp

(
−

∑
i

∫ t

0
h̄i(t

′)(hi(t
′) − ηi(t

′)) dt ′
)

where D{h, h̄} = ∏
t,i dhi(t) dh̄i(t)/2π

√−1, with
√−1 being an imaginary unit, and

	ij =
∫ t

0
(σi(t

′)h̄j (t
′) + σj (t

′)h̄i(t
′)) dt ′. (2.12)

The average over interactions can be performed by expanding the exponential in terms of
interactions as was done for the replica method [14]. Then, we obtain

exp
∑
i<j

Jij	ij


 = exp

1

2
N Tr A

(
	

N

)
. (2.13)

The form of A(x) depends on the correlation among interactions. For the SK model,
ASK(x) = x2/2, whereas for the AH model, it is given by A(x) = −α{ln(1 + x) − x}.
In the following argument, we use the expression A(x) = ∑

n anx
n, where an = (−1)n/n for

the AH model. Note A(x) reduces to ASK(x) for α → ∞ after replacing x → x/
√

α.
In the mean-field theory, we should find the one-site problem with mean fields, which are

expressed by the time correlation function and response function

C(t, t ′) = 1

N

∑
i

〈σi(t)σi(t
′)〉, (2.14)

G(t, t ′) = 1

N

∑
i

〈σi(t)h̄i(t
′)〉, (2.15)

while 〈h̄i(t)h̄i(t
′)〉 = 0, which preserves the normalization of probability as discussed in [3].

Actually, this expression is obtained by differentiating 〈1|P(∞)〉 = 1 with respect to ηi(t) and
ηi(t

′). Similarly, by using partial integrals, we see that G(t, t ′) equals the response function
introduced before. Thus, G(t, t ′) = 0 for t < t ′.

We should find the one-site problem in the action by replacing the variables with the same
site indices according to (2.14) and (2.15). We describe the derivation in appendix A. Due to
〈h̄i(t)h̄i(t

′)〉 = 0 and G(t < t ′) = 0 , almost all terms in Tr(	/N)n disappear, leaving

1

2
Nan Tr

(
	

N

)n

∼ 1

2
nan

∑
i

{∫
h̄i(t

′′)Dn−1(t
′′, t ′)h̄i(t

′) dt ′′ dt ′

+ 2
∫

h̄i(t
′′)�n−1(t

′′, t ′)σi(t
′) dt ′′ dt ′

}
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where

Dn−1(t
′′, t ′) =

n−2∑
k=0

∫
Gn−2−k(t ′′, t1)C(t1, t2)G

k(t ′, t2) dt1 dt2

�n−1(t
′′, t ′) = Gn−1(t ′′, t ′)

where

Gk(t ′′, t ′) ≡
∫

· · ·
∫

G(t ′′, t1) · · · G(tk−1, t
′) dt1 · · · dtk−1

G0(t, t ′) should be regarded as δ(t − t ′). Since G(t, t ′) = 0 for t < t ′, integral time variables
in Gk(t ′′, t ′) are of descending order. Note that, in Dn−1, the earliest time variables in the
convolutions of G, t1 and t2 are identical to the time variables in C(t1, t2).

Putting these expressions in H {h} and introducing one-site state vector |p(t)〉. we obtain
the one-site problem

|p(t)〉 =
∫

D{h, h̄}T exp{L(t, 0)}|p(0)〉, (2.16)

where

L(t, 0) =
∫ t

0
w(t ′) dt ′ −

∫ t

0
h̄(t ′)(h(t ′) − η(t ′)) dt ′ +

1

2

∫ t

0

∫ t

0
h̄(t ′′)D(t ′′, t ′)h̄(t ′) dt ′′ dt ′

+
∫ t

0

∫ t

0
h̄(t ′′)�(t ′′, t ′)σ (t ′) dt ′′ dt ′

and

D(t ′′, t ′) =
∞∑

n=2

nanDn−1(t
′′, t ′) (2.17)

�(t ′′, t ′) =
∞∑

n=2

nan�n−1(t
′′, t ′). (2.18)

This completes the reduction to one-site problem.
�(t, t ′) gives a memory effect and D(t, t ′) gives a correlation of effective Gaussian noises.

For our model, �(t, t ′) is made of convolutions of response function of the surrounding spins.
This property will be quite general for two-body interactions. Note that they are given simply
by correlation and response functions themselves for the SK model and usual products of
correlation and response functions for the p-spin model. As discussed in the next section, we
can show that Dn−1(t, t

′) and �n−1(t, t
′) satisfy the fluctuation–dissipation relation if G(t, t ′)

and C(t, t ′) do.
To conclude this section, we present the energy expectation value in terms of mean fields.

For this purpose, it is sufficient to express Ne = [E(t) exp Tr J	/2] in terms of mean fields,
where E(t) is the energy function with spin variables σi(t) with very large t and ηi(t) = 0. The
details are presented in appendix A. By the expansion in terms of interactions and replacing
the site-paired variables by correlation and response functions, we obtain

e = −1

2

∫ t

0
(G(t, t ′)D(t, t ′) + C(t, t ′)�(t, t ′)) dt ′. (2.19)

Note that the diagrams that are not connected to E(t) do not contribute to Ne because
〈σ(t)h̄(t ′)〉 = 0 for t < t ′ and 〈h̄(t)h̄(t ′)〉 = 0.
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3. Self-consistent equations

In the previous section, we have obtained an effective one-site spin dynamics with memory
and noise terms. In this section, we discuss the self-consistent equations based on several
assumptions. The relation between dynamical theory and replica theory is also discussed.

First, we review the thermodynamics of the effective one-site action in the paramagnetic
phase. According to [5], if functions D(t, t ′) and �(t, t ′) in the effective one-site action (2.17)
satisfy the relation

�(t, t ′) = βθ(t − t ′)
∂D(t, t ′)

∂t ′
, (3.1)

there exists a thermal equilibrium state which is described by Gibbs–Boltzmann weight and
the fluctuation–dissipation relation

〈σ(t)h̄(t ′)〉 = βθ(t − t ′)
∂〈σ(t)σ (t ′)〉

∂t ′
(3.2)

holds. We will not review the proof here and only point out that the problem before random
average actually has thermal equilibrium state at least in high temperature. We remark that
(3.1) holds if G(t, t ′) and C(t, t ′) satisfy the FD relation. In appendix C, we show this without
assuming the time translation invariance.

In the low-temperature phase, it is natural to assume that spontaneous magnetization
appears. Then, the correlation function will be separated into a fast part and a time-independent
part. The action is also divided into two parts. The fast part gives the action similar to that
of paramagnetic phase. The time-independent part gives rise to time-independent effective
fields. Thus, even in the low-temperature phase, the argument above is applicable with suitable
modifications. However, this picture oversimplifies the situation of the low-temperature phase.
As we will see in the next subsection, the time-independent part cannot be determined self-
consistently for small α. This corresponds to the fact that there is no replica symmetry (RS)
solution for small α. Accordingly, the time-independent part should be replaced by a slow
part, which controls the very slow dynamics in low-temperature phase.

In this section, we first discuss the simplest picture of spontaneous magnetization and
then study the slow dynamics.

3.1. The simplest approximation

It is known that RSB solution properly describes the property of spin-glass states for the SK
model. However, the simple RS solution identifies the phase transition point correctly. This
solution corresponds to the dynamical picture where there is a thermal equilibrium state to
which the system relaxed in a thermal time scale τ0 and stays in this state forever. We first
discuss this situation, which will provide some calculus with the fast part and the slow part.

Let us assume

C(t, t ′) = Cf (t − t ′) + q (3.3)

G(t, t ′) = Gf (t − t ′) (3.4)

where q = 〈σ 〉2 is a square of spontaneous magnetization, i.e. Edward–Anderson order
parameter [20]. 〈· · ·〉 means a thermal average and · · · means an average over quenched
randomness, which is realized by an average over effective local field. Cf (t − t ′)
and Gf (t − t ′) are the fast part of the functions, which satisfy the FD relation
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Gf (t − t ′) = βθ(t)∂Cf (t − t ′)/∂t ′. Cf (t − t ′) varies from 1 − q to zero in the thermal
time scale. Thus, we have∫ t

0
Gf (t − t ′) dt ′ = β(1 − q)

for t 
 τ0. Substituting (3.3) and (3.4) into (2.17) and (2.18), we obtain an action in which
all correlation and response functions are replaced by the fast-part functions plus an additional
term proportional to q, that is

L = Lf +
1

2
λ

(∫
h̄(t) dt

)2

. (3.5)

The constant λ in the last terms reduces to

λ = q
∑

n

nan

n−2∑
k=0

∫ ∞

0
Gn−2−k

f (t) dt

∫ ∞

0
Gk

f (t ′) dt ′

= q
∑

n

n(n − 1)an{β(1 − q)}n−2

= qA′′(β(1 − q)).

By introducing a Gaussian variable x which obeys the distribution Dx = exp(−x2/2) dx/
√

2π

in (2.16), the second term in (3.5) induces a time-independent field
√

λx. The rest parts of
action drive the system to a thermal equilibrium state. Thus, we obtain

〈σ 〉 = tanh(β
√

λx) (3.6)

and self-consistent equation for q = 〈σ 〉2 is given by

q =
∫

tanh2(β
√

λx) Dx (3.7)

This is a typical saddle-point equation for RS solution. For the SK model, λ = q and the
equation predicts the transition temperature correctly, although this solution is known to be
unstable as de Almeida–Thouless instability [21]. In the context of dynamics, the solution is
expected to be unstable against the slow change of correlation function for t − t ′ 
 τ0.

Let us study the RS solution for the AH model [14], for which nan = (−1)n, which gives

λ = αq

(1 + β(1 − q))2
. (3.8)

Interestingly, (3.7) does not have a solution with q �= 0 for 0 < α < 1 down to T = 0.
Formally, this is due to the positive sign of β in λ, which is certainly due to the negative sign
of interactions. Roughly speaking, the memory effect exists, as we will see in the following
subsections, but is not strong enough to give time-independent effective field. For large enough
α, the AH model becomes similar to the SK model. This crossover occurs at α ∼ 1.4. In this
paper, we restrict ourselves to 0 < α < 1 and discuss the possible slow dynamics.

3.2. Effective slow dynamics

In the previous section, we have assumed that C(t, t ′) becomes constant q in the thermal time
scale t − t ′ ∼ τ0, and beyond this time scale, C(t, t ′) sticks to this constant. This corresponds
to the assumption that there is one thermal equilibrium state. For the AH model with small
α, we cannot find the solution of this property. Even with this situation, the simulation shows
that there is a temperature below which the energy no longer obeys the high-temperature
expansion. By using replica method, this temperature can be identified by marginally stable
RSB solution.
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Dynamical interpretation of RSB is that there is a hierarchy of time scales which
describes the nonerogdic dynamics. The shortest time scale is the one which characterizes
the local thermal equilibrium, while larger time scales describe the transitions among erogdic
components. Accordingly, it was proposed that the FD relation should be generalized to be

G(t, t ′) = βX(C)θ(t − t ′)
∂C(t, t ′)

∂t ′
(3.9)

where X(C) is a function of C(t, t ′) (for recent review, see [1, 2]).
Let us concentrate on the simplest situation. We assume that C(t, t ′) becomes q after a

thermal relaxation time scale t − t ′ ∼ τ0 and sticks to this value until a large time τ1 passes.
After τ1, the system gets away from an initial local equilibrium state with C(t, t ′) decreasing to
0. τ1 characterizes the onset of nonergodic time scale. Accordingly, we assume that X(C) = 1
for q < C(t, t ′) � 1 and X(C) = m for 0 � C(t, t ′) � q, where q and m are determined by
the self-consistent equation.

Following this picture, we divide the correlation and response functions into the fast part
and the slow part.

C(t, t ′) = Cf (t − t ′) + Cs(t, t
′), (3.10)

G(t, t ′) = Gf (t − t ′) + Gs(t, t
′), (3.11)

Cf (t − t ′) changes from 1 − q to 0 in the thermal time scale and Cs(t, t
′) changes from q to

0 in nonergodic time scale. The assumption on X(C) implies Gf (t) = −βθ(t)∂Cf (t)/∂t for
the first part and Gs(t, t

′) = βmθ(t − t ′)∂Cs(t, t
′)/∂t ′ for the slow part. Because of the slow

change of Cs(t, t
′),Gs(t, t

′) is expected to be very small, although the integral of Gs(t, t
′) is

not negligible.
Correspondingly, D(t, t ′) and �(t, t ′) are divided into the fast part and the slow part by

substituting the expressions above. The fast parts of D(t, t ′) and �(t, t) are defined simply
by replacing all C(t, t ′) and G(t, t ′) by Cf (t − t ′) and Gf (t − t ′) in each function. They are
denoted by Df (t − t ′) and �f (t − t ′). Then, the slow parts Ds(t, t

′) and �s(t, t
′) are defined

by

D(t, t ′) = Df (t − t ′) + Ds(t, t
′)

�(t, t ′) = �f (t − t ′) + �s(t, t
′).

As discussed in appendix B, these equations mean that the slow part contains many terms
which are convolutions of the fast part and the slow part of correlation and response functions.
Interestingly even in this situation, the GFD relation between Ds(t, t

′) and �s(t, t
′) holds as

discussed in appendix C. Thus, we can write

�(t, t ′) = βX(C)θ(t − t ′)
∂D(t, t ′)

∂t ′
. (3.12)

We expect that the time dependence of D(t, t ′) is similar to C(t, t ′). Let us denote D(t, t) by
D0 and Ds(t, t) by D1, which are assumed to be independent of t. Then, Df (t − t ′) varies
from D0 − D1 to zero in the thermal time scale τ0. On the other hand, Ds(t, t

′) sticks to D1 in
t − t ′ ∼ τ1 and varies from D1 to zero in the nonergodic time scale. Further, Ds(t, 0) tends to
zero as t → ∞ if C(t, 0) tends to zero, as shown in appendix B. We will express D0 and D1

in terms of q and m later.
Using the separation of D(t, t ′) and �(t, t ′), the action is divided into the fast part and

the slow part:

L = Lf + Ls, (3.13)
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where

Lf =
∫

w(t ′) dt ′ −
∫

h̄(t ′)(h(t ′) − hs(t
′)) dt ′ +

1

2

∫ ∫
h̄(t ′′)Df (t ′′ − t ′)h̄(t ′) dt ′′ dt ′

+
∫ ∫

h̄(t ′′)�f (t ′′ − t ′)σ (t ′) dt ′′ dt ′

Ls = −
∫

h̄(t ′)hs(t
′) dt ′ +

1

2

∫ ∫
h̄(t ′′)Ds(t

′′, t ′)h̄(t ′) dt ′′ dt ′

+
∫ ∫

h̄(t ′′)�s(t
′′, t ′)σ (t ′) dt ′′ dt ′

where hs(t) is a slow part of h(t) and does not vary in the time scale smaller than τ1. η(t)

is dropped for simplicity. Lf brings a thermal equilibrium state characterized by local field
hs(t). In the time scale t − t ′ < τ1,Ds(t, t

′) and �s(t, t
′) can be regarded as constants.

Accordingly, h̄(t) in Ls are replaced by an average over τ1. Similarly, we can replace σ(t) in
Ls by the average over a time scale τ1, which is given by φ(t) = 〈σ(t)〉 = tanh(βhs(t)). In
this way, we obtain the effective slow action given by

Ls = −
∫

h̄(t ′)hs(t
′) dt ′ +

1

2

∫ ∫
h̄(t ′′)Ds(t

′′, t ′)h̄(t ′) dt ′′ dt ′

+
∫ ∫

h̄(t ′′)�s(t
′′, t ′)φ(t ′) dt ′′ dt ′.

Time variables in this expression should be replaced by t/τ1. However, to avoid the complexity
of notation, we use the same time variables for Ls as Lf . This will not cause trouble as long
as we are careful when the fast part and the slow part coexist.

3.3. Correspondence with replica method

Having an effective slow action, we first address the onset condition of the slow dynamics,
which will turn out to be the saddle-point equation and marginally stable condition of the
one-step RSB ansatz [5]. To establish a correspondence with replica theory, we write the
self-consistent equations for the typical values of the functions Cs(t, t

′) and Gs(t, t
′). For

this purpose, we need to find the distribution function for hs(t). As discussed in appendix D,
dynamical equation gives a distribution function of x = hs/

√
D1, which reads

p(x) dx = 1

z
coshm(β

√
D1x) Dx (3.14)

where D1 = Ds(t, t) and z is a normalization constant. Note that m in this expression comes
from the GFD relation. Then, the self-consistent equation for q = 〈σ 〉2 = Cs(t, t) reads

q =
∫

tanh2(β
√

D1x)p(x) dx (3.15)

which is identical to the saddle-point equation of the one-step RSB solution, if D1 is given
suitably.

We need another equation to determine m. Onset of glass dynamics is signalled by non-
zero Gs(t, t

′) with t ′ ∼ t . In the next section, we obtain the dynamical equation for Gs(t, t
′),

which reduces to

Gs(t, t
′) ∼ χ(t)χ(t ′)�s(t, t

′)

for small t − t ′, where χ(t) = β(1 − φ2(t)). Further, �s(t, t
′) is proportional to Gs(t, t

′) for
small t − t ′ which is still large enough to make an approximation

Gk
f (t1 − t2) ∼ (β(1 − q))kδ(t1 − t2)
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for the fast part. Using this expression, we obtain

�s(t, t
′) ∼

∑
n

n(n − 1)an{β(1 − q)}n−2Gs(t, t
′).

= Gs(t, t
′)A′′(β(1 − q)).

Then, we obtain

1 = A′′(β(1 − q))

∫
χ2p(x) dx (3.16)

where χ = β(1 − tanh2(β
√

D1x)). This is certainly the marginally stable condition obtained
by replica theory.

Remaining job is to express D1 ≡ Ds(t, t) in terms of q and m. With large enough t 
 τ1,
integrating the relation �(t, t ′) = βX(C)θ(t − t ′)∂D(t, t ′)/∂t ′ over t ′, we obtain∫ t

t−τ1

�(t, t ′) dt ′ = β(D0 − D1),∫ t

0
�(t, t ′) dt ′ = β(D0 − D1 + mD1)

where we used Ds(t, 0) = 0. On the other hand, the integrals on the left-hand sides are
given by the definition of �(t, t ′) and the GFD relation between C(t, t ′) and G(t, t ′), giving
A′(β(1 − q)) and A′(β(1 − q + mq)), respectively. Thus, we have

D0 = 1

m
A′(βxm) +

(
1 − 1

m

)
A′(βx0)

D1 = 1

m
(A′(βxm) − A′(βx0))

where x0 = 1 − q and xm = 1 − q + mq. Putting these results in the self-consistent equations,
we recover the results obtained by the replica theory [8, 14].

Repeating the same procedure, we can obtain the energy expectation value e as follows:

e = −1

2
β

∫ t

0
X(C)∂t ′(C(t, t ′)D(t, t ′)) dt ′

= −1

2
β(D0 − qD1 + mqD1)

= −1

2

{
1

m
xmA′(βxm) +

(
1 − 1

m

)
x0A

′(βx0)

}

which also equals the replica result.
To be complete, we briefly describe the solution of the self-consistent equations (3.15) and

(3.16). In the replica theory of the AH model with small α, there is no RS solution, but there
are two kinds of RSB solutions, one is the static solution which is obtained by extremizing
the free energy with respect to q and the block size m of non-zero replica order parameter.
This solution is stable and describes the absolute minimum state. Other is the dynamical
solution which is defined by the marginally stable condition of the replicon modes. We found
that this condition is identical to onset condition of nonergodic dynamics as described in this
section. Actually, for 0 < α < 1.4, (3.15) and (3.16) have a solution, which gives q ∼ 1
and m ∼ 1 near the transition temperature. For small α, the transition temperature of the
dynamical solution becomes much higher than that of static one. The annealing simulations
are consistent with the dynamical transition given by dynamical solution.
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4. Dynamical equation for long time scale

Having the same results as the replica theory, we address the dynamics of the time scale larger
than τ1, where the correlation function decreases to zero. Although the study in this section is
far from conclusive, we find several interesting aspects of the self-consistent equation.

4.1. Effective dynamical equation and onset of nonergodic dynamics

By introducing Gaussian noise ξ(t) in Ls , we write∫
exp(Ls) dh dh̄ ∝

∫
exp K{ξ(t)}

∏
t

δ(he(t) − h(t))
∏

t

dh(t) dξ(t)

where the effective field he(t) is given by

he(t) =
∫ t

0
�s(t, t

′)φ(t ′) dt ′ + ξ(t) (4.1)

and K{ξ(t)} defines the Gaussian distribution of ξ(t) with ξ(t)ξ(t ′) = Ds(t, t
′), where · · · in

this section means an average over ξ(t). Then, we write the dynamical equation

φ(t) = tanh(βhe(t)), (4.2)

φ(t) directly depends on ξ(t) and also depends on ξ(t ′) with t ′ < t through φ(t ′′) with
t ′ < t ′′ < t . The correlation and response functions are given by ξ(t)-average of φ(t)φ(t ′)
and δφ(t)/δξ(t ′). Using the expression for φ(t), we have

δφ(t)

δξ(t ′)
= χ(t)δ(t − t ′) + χ(t)

∫ t

t ′
�s(t, t

′′)
δφ(t ′′)
δξ(t ′)

dt ′′ (4.3)

where χ(t) = β(1 − φ2(t)), which equals the time integral of fast time response function.
Note that the fast functions work as a delta function in the long time scale. Thus we should
assume G(t, t ′) = χ(t)δ(t − t ′) + Gs(t, t

′), implying(
δφ(t)

δξ(t ′)

)
s

= χ(t)�s(t, t
′)χ(t ′) + χ(t)

∫ t

t ′
�s(t, t

′′)
(

δφ(t ′′)
δξ(t ′)

)
s

dt ′′. (4.4)

This is the basic equation in the study of long time dynamics. There is no delta-function-like
contribution in the integral since all quantities are made of slow parts. Thus the integral
becomes zero for t ′ → t , which implies Gs(t, t

′) ∼ χ(t)χ(t ′)�s(t, t
′) in this limit. This is

the result used in the previous section. Using (4.4), we can write Gs(t, t
′) in terms of χ(t)

and �s(t, t
′). Explicitly,

Gs(t, t
′) =

∑
n

χ(�sχ)n(t, t ′). (4.5)

With the GFD relation, this makes the self-consistent equation for correlation and response
functions. Formally, χ(t) are functions of Gaussian variables ξ(t) whose correlation is given
by Ds(t, t

′). However, it will not be easy to express the correlation among χ(t) in terms of
the mean fields. In the next section, we study some approximation to evaluate the right-hand
side of (4.5).

4.2. Study of nonergodic dynamics

By rather general argument, it was suggested that the correlation function Cs(t, t
′) is generally

expressed by the function C(ϕ(t ′)/ϕ(t)) [7], where ϕ(t) is an increasing function of t. This
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expression violates the time translation invariance, which reflects the effect of ageing. The
solution for the SPS model is given by the simple case C(x) = qx, which gives the long time
correlation and response functions

C0(t, t
′) = q0

ϕ(t ′)
ϕ(t)

(4.6)

G0(t, t
′) = g0

ϕ′(t ′)
ϕ(t)

(4.7)

for t > t ′, where g0 = βmq0 due to the GFD relation. As we will see, the above form has
a very good property as correlation and response functions, just like an exponential function.
Following calculation is somewhat tentative and far from conclusive but its simplicity may be
helpful in gaining some insight into the calculus of slow dynamics.

Let us assume that Cs(t, t
′) = C0(t, t

′) and Gs(t, t
′) = G0(t, t

′) for the AH model as a
working assumption. We may think that, for a very long time scale for which Cs(t, t

′) ∼ 0,
the function C(x) will be approximated to be the first order of x. With this approximation, the
convolutions of G0(t, t

′) are easily evaluated as presented in appendix E. Interestingly, for the
AH model, �s(t, t

′) is given by a very concise form

�0(t, t
′) = σ0

ϕb(t ′)
ϕb(t)

ϕ′(t ′)
ϕ(t)

(4.8)

where b = ag0 with a = (1 + β(1 − q))−1 and σ0 = αa2g0. Note that the above form is
true only for the AH model. The explicit form of �0(t, t

′) depends on the interactions. Since
b > 0, �0(t, t

′) decreases faster than G0(t, t
′). This is because the correlation of interactions

alternately changes sign as the number of interactions increases due to frustration.
Now we need some approximations to evaluate the right-hand side of (4.5). Since

χ(t) > 0, we simply assume

n∏
i=1

χ(ti) = χn (4.9)

where χ = β(1 − q). Since this gives the lower bound of the right-hand side of (4.5), we
denote the approximated expression by GL(t, t ′). Using this expression, we have

GL(t, t ′) = σ0χ
2x−kxb ϕ′(t ′)

ϕ(t)
(4.10)

where x = ϕ(t ′)/ϕ(t) and k = χσ0. Note the negative sign in front of k, which is due to the
positive weights of the summation. The self-consistency would be achieved if αa2χ2 = 1
and b = k, which is 1 = αaχ . These two equations require aχ = 1, which are not satisfied
since aχ < 1. We also note that the first equation becomes the marginality condition if χ2

is replaced by χ2. This may imply that the correlation among χ(t) is important to obtain
meaningful result.

In addition to the correlation among χ(t), we remark on the effect by short time terms
in the convolution. Let us discuss the correction term to C0 such as (ϕ(t ′)/ϕ(t))2. Although
this term itself decreases faster than ϕ(t ′)/ϕ(t), it will give a logarithmic contribution in the
convolutions, which will lead to the change of exponent. We should note that the factor
a = (1 + β(1 − q))−1 in b, which arises from a fast thermal time scale, contributes to the
exponent in �0.
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The study in this section may imply an important aspect of glassy dynamics. That is, with
large-scale convolutions, the short time property of correlation functions plays an important
role in determining the large time property of the solution. This situation looks strange when
compared with the second-order phase transition. It will be fruitful to study how to take into
account the correlation among χ(t) and how to find corrections terms in Cs and Gs .

5. Discussion

In this paper, we have studied the nonergodic dynamics of the Ising AH model by the mean-
field method. The resulting one-site problem has memory and noise terms which are given
by the large-scale convolutions of correlation and response functions. These convolutions
naturally represent a chain of effects of other spins. The action is divided into the fast part
and the slow part in the same way as the SPS model. As expected, memory and noise terms
are governed by the fluctuation–dissipation relation �(t, t ′) = βX(C)θ(t − t ′)∂D(t, t ′)/∂t ′

in the same way as correlation and response functions. Thanks to this relation, the seemingly
involved one-site action is reduced to rather simple form in large time scale.

The dynamics of the AH model with small α is quite different from that of the SK
model. In the AH model with small α, there is no time-independent field determined self-
consistently, which corresponds to the absence of the RS solution. Consequently, we need
to assume that the correlation function decreases to zero in the very long time scale. This
implies that the low-temperature states are not similar to some time-independent states but
similar to the snapshot of a paramagnetic state. The thermal time scale is denoted by τ0, while
onset of nonergodic time scale is denoted by τ1. Onset of the slow part gives the equation
identical to the marginally stable condition of the replica method. By this study, we found
that m in the GFD relation is identical to the block size of the replica order parameter. This
relation has been found in several mean-field models [4, 5] and confirmed by rather general
argument [9].

To study the dynamics in nonergodic time scale, we have derived the dynamical equation
for Gs(t, t

′), which consists of �s(t, t
′) and χ(t). To discuss the self-consistent equation, we

adopted the assumption G0(t, t
′) = g0ϕ

′(t ′)/ϕ(t) for Gs(t, t
′). We found that the calculus

with G0(t, t
′) shows some interesting aspects, which looks like a natural extension of the

exponential function. Disregarding the correlation among χ(t), the self-consistent equation
is evaluated explicitly, although this does not achieve the self-consistency. In this calculation,
the function G0(t, t

′) shows an interesting property under convolution, which looks similar
to the exponential function, such as exp(ct ′)/exp(ct). This aspect is quite appealing and we
expect that the correct form of C(x) will be obtained by small change from qx.

Although the AH model looks quite special, we found that this model is very similar
to the long-range anti-ferromagnets (AF), which are defined by spatially decreasing anti-
ferromagnetic interactions. The energy function of these models is expressed by the summation
of quadratic constraint terms on spin variables. This implies that these models belong to the
same category of glassy system. Actually, by introducing a replica method without random
averages, we showed that these models have similar low-temperature glassy states [15, 16],
which is also confirmed by numerical simulations. Following the spirit of a replica method
without random averages [15], we may formulate the dynamical method to study the long-range
anti-ferromagnetic spin models, which will give self-consistent equations similar to those of
the AH model. Since there are various anti-ferromagnetic or competitive interactions in nature,
the study in this direction will hopefully lead to a deeper understanding of nonequilibrium
phenomena in nature.
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Appendix A

In this appendix, we review the diagrammatic calculations of mean-field one-site action and
energy expectation value.

The first step is to do ξ
µ

i -average of H {h}. This is performed in the same way as the
replica method [14]. Since Jij ∼ 1/

√
N , we expand the action in terms of Jij , yielding

exp
∑
i<j

Jij	ij =
∏
i<j

{
1 + Jij	ij +

1

2
(Jij	ij )

2 + · · ·
}

(A.1)

where

	ij =
∫

(h̄j (t)σi(t) + h̄i(t)σj (t)) dt. (A.2)

Factors Jij	ij are diagrammatically represented by lines with ends at i and j . For the AH
model, ξ

µ

i -average is performed by using the expectation values

JijJjk · · · Jki = (−1)nα

Nn−1
(A.3)

where Jij makes a loop of length n with all different site indices. In the diagrams which are
made of several loops, each loop gives the contribution given by (A.3). In this way, ξµ

i -average
of (A.1) is expressed by products of loops. After exponentiating and summing over sites, they
reduce to

Nα

∞∑
n=2

(−1)n

2n
Tr

(
	

N

)n

. (A.4)

Note we need a factor 1/2n to count the number of the diagrams in Tr(	/N)n correctly.
Let us study the structure of Tr(	/N)n. The term h̄iσj can be expressed by an arrow

starting from site i and ending at site j . Then, Tr 	n contains 2n diagrams with possible
orientations of arrows. To do the mean-field approximation, it is convenient to group them
according to the number of h̄j (t)h̄j (t

′). The diagrams without this factor have all arrows in the
same orientation. Then they are expressed by the product of

∑
i σi(t)h̄i(t

′)/N . The diagrams
with one h̄j h̄j should have one σiσi pair. The diagrams with more than one h̄j h̄j will not
contribute in the mean-field approximation due to 〈h̄j h̄j 〉 = 0. After site sum, the action is
expressed by the convolutions of the form

∑
i ai(t)bi(t

′)/N , where ai(t) and bi(t) are either
h̄i(t) or σi(t).

Having the convolutions of the form
∑

i aibi/N , one-site problem is obtained as follows.
For this form, we introduce mean-field functions F = G or C depending on the pair ai and
bi . By substituting

∑
i aibi/N = F + δF , where δF = ∑

i aibi/N − F , and keeping the
first-order terms of δF in the action, dynamical variables are completely decoupled, giving
an effective one-site problem. The self-consistent equation is certainly given by 〈δF 〉 = 0,
where 〈· · ·〉 means an average by the one-site problem.

Let us discuss the effective one-site action on site 0. As discussed above, the diagrams
should be grouped according to the number of h̄j (t)h̄j (t

′) pair. We first note that the diagrams
with more than one h̄j (t)h̄j (t

′) pair do not contribute to the one-site action due to the relation
〈h̄j (t)h̄j (t

′)〉 = 0. If there is no such pair, diagrams have arrows with the same orientation,
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which implies that mean-field functions are all G. Then, the contribution to the one-site
problem is given by

2h̄0(t)G
n−1σ0(t

′) (A.5)

after site summation. If there is one h̄j h̄j pair, site j should be identical to site 0. If it is not,
we have zero mean field on site 0 due to 〈h̄j (t)h̄j (t

′)〉 = 0. With h̄0h̄0, there is one σjσj pair
in the diagram, which gives rise to C. Then, we obtain the expression

h̄0(t)G
n−2−kCGkh̄0(t

′), (A.6)

where Gk means a suitable convolution of response functions. k takes 0, 1, 2, . . . , n − 2
depending on the place of σjσj pair. We need a factor 1/2 to avoid double counting for both
expressions. Recovering time variables in C and G and summing over n, we find the one-site
action presented in section 2.

Now let us discuss the energy expectation value defined by

Ne = −

∑

k<l

Jklσk(t)σl(t) exp


∑

i<j

Jij	ij





 . (A.7)

Let us fix k and l for time being. In the same way as above, the contributing diagrams coming
from an exponential factor are expressed by the chains of arrows from k to l. Among them,
the diagrams with arrows with the same direction starting from l and ending at k give �Ck .
The contribution of the rest of the diagrams is given by DGk . We need a factor 1/2 to avoid
double counting. Summing over site indices, we have

e = −1

2

∫ t

0
(C(t, t ′)�(t, t ′) + G(t, t ′)D(t, t ′)) dt ′. (A.8)

Appendix B

In this appendix, we discuss the separation of the fast part and the slow part of D(t, t ′) and
�(t, t ′). Symbolically, the slow parts are defined by

Ds(t, t
′) = D{Cf + Cs,Gf + Gs} − D{Cf ,Gf }

(B.1)
�s(t, t

′) = �{Gf + Gs} − �{Gf }.
Assuming t > t ′, let us study the expression for �n−1(t, t

′). Substituting Gf + Gs and
expanding in terms of Gs , we obtain

�s,n−1(t, t
′) =

∑
k1+k2=n−2

G
k1
f GsG

k2
f (t, t ′) +

∑
k1+k2+k3=n−3

G
k1
f GsG

k2
f GsG

k3
f (t, t ′) + · · · .

In this expression, the products are convolutions and time variables are of descending order.
For t1 − t2 
 τ0, G

k1
f (t1, t2) can be replaced by bk1δ(t1 − t2), where b ≡ β(1 − q) since Gs

can be regarded as a constant. We can do the same thing for Ds and obtain

�s,n−1(t, t
′) =

n−1∑
p=1

(
n − 1

p

)
bn−1−pGp

s (t, t ′)

Ds,n−1(t, t
′) =

n−1∑
p=1

(
n − 1

p

)
bn−1−p

∑
k1+k2=p−1

Gk1
s CsG

k2
s (t, t ′).
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To obtain the expression for Ds,n−1(t, t
′), we substitute the expression of �s,n−1(t, t

′) and use
the equality ∑

k2�l�k−k1

(
k − l

k1

)(
l

k2

)
=

(
k + 1

k1 + k2 + 1

)
.

Strictly, Cs in the last line should be C except for p = 1 term, but the difference
is negligible in the time scale t − t ′ ∼ τ1. Note that there is a correspondence between
�s,n−1(t, t

′) and Ds,n−1(t, t
′) order by order of b.

Let us estimate the value Dn−1(t, 0) in the large t limit. It is enough to show this for each
term in Dn−1(t, 0), which is explicitly given by

Gk1
s CsG

k2
s (t, t ′) =

∫ ∫
Gk1

s (t, t1)Cs(t1, t2)G
k2
s (t ′, t2) dt1 dt2. (B.2)

When t ′ ∼ 0, we can set t2 ∼ 0 since t ′ > t2. Then, the region of t1 which contributes to
the integral should satisfy Cs(t1, 0) > 0 and ∂Cs(t, t1)/∂t1 > 0. Although the integral of
Gk1

s (t, t1) can be finite, the factor Cs(t1, 0) becomes very small for large t1. Thus, the region
with finite contribution vanishes and the integral tends to zero for t → ∞.

By using G = Gf + Gs , we note an interesting relation

G

1 + G
(t, t ′) = Gf

1 + Gf

(t, t ′) +
a2Gs

1 + aGs

(t, t ′) (B.3)

for the time scale t − t ′ > τ1, where a = (1 + β(1 − q))−1. The first term works like a delta
function for the time scale larger than τ1.

Appendix C

In this appendix, we show the fluctuation–dissipation-like relation between �n(t, t
′) and

Dn(t, t
′). For simplicity, we restrict ourselves to nonergodic time scale, for which X(C) = m.

All function in this appendix are regarded as slow parts. As discussed in the previous appendix,
slow parts of these functions are expressed by the summation of convolutions given by

�̄p(t, t ′) = Gp
s (t, t ′) (C.1)

D̄p(t, t ′) =
p−1∑
k=0

∫ ∫
Gp−k−1

s (t, t ′′)Cs(t
′′, t ′′′)Gk

s (t
′, t ′′′) dt ′′ dt ′′′. (C.2)

Since �s(t, t
′) and Ds(t, t

′) are expressed by these convolutions with the same coefficients, it
is enough to show the relation for each p, that is

�̄p(t, t ′) = βmθ(t − t ′)∂t ′D̄p(t, t ′) (C.3)

by assuming Gs(t, t
′) = βmθ(t − t ′)∂t ′Cs(t, t

′).
For simplicity, the subscript s is dropped in the following expressions. For p = 1, the

relation is trivial. Let us study the situation for p = 2. The functions are expressed as an
integral over one time variable, denoted by t ′′. We assume t > t ′. Then,

�̄2(t, t
′) =

∫ t

t ′
G(t, t ′′)G(t ′′, t ′) dt ′′, (C.4)

D̄2(t, t
′) =

∫ t ′

0
C(t, t ′′)G(t ′, t ′′) dt ′′ +

∫ t

0
G(t, t ′′)C(t ′, t ′′) dt ′′. (C.5)
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Then interval in the last integral [0 − t] is divided into [0 − t ′] and [t ′ − t]. By integral by
parts for [0 − t ′], we have

D̄2(t, t
′) =

∫ t

t ′
G(t, t ′′)C(t ′′, t ′) dt ′′ + βmC(t, t ′)C(t ′, t ′). (C.6)

We assume that C(t ′, t ′) is independent of t. By differentiating D̄2(t, t
′) with respect to t ′, we

obtain the desired relation for p = 2. To study the relation for p � 3, it is crucial to divide
the integral region into t > t ′ and t < t ′ for the integrals which contain C(t, t ′). To show the
relation for general p, we may use the mathematical reduction, that is, by noting the relation
D̄p = D̄p−1G + �̄p−1C and �̄p = �̄p−1G, where products are understood as convolution, we
repeat the argument for p = 2.

Appendix D

In this appendix, following [5], we discuss the distribution of hs(t) for the effective slow
action. Let us write the action in the form

exp{L(t1)} =
∫

exp{L(t1, t0) + L(t0)}
∏

t0�t<t1

dh(t) (D.1)

and demand that L(t0) and L(t1) are the same functions of the effective field. Then, L(t)

reflects the stationary distribution of effective field in locally equilibrium states. L(t1, t0) is
the action of the region t0 < t < t1 defined by

L(t1, t0) = −
∫ t1

t0

h̄(t)h(t) dt +
∫ t1

t0

∫ t

t0

h̄(t)Ds(t, t
′)h̄(t ′) dt dt ′

+
∫ t1

t0

∫ t

t0

h̄(t)�s(t, t
′)φ(t ′) dt dt ′ +

∫ t1

t0

h̄(t)Ds(t, t0)η(t0) dt (D.2)

where the last term reflects the effect from the region 0 < t < t0. We assume the relation
�s(t, t

′) = βmθ(t − t ′)∂Ds(t, t
′)/∂t ′. The crucial point in the following argument is that we

can set h̄(t) = βm∂tφ(t) under the integral over h(t). To see this, by introducing

η(t) =
∫ t

h̄(t ′) dt ′ (D.3)

we write∫ t

t0

h̄(t)Ds(t, t
′)h̄(t ′) dt ′ +

∫ t

t0

h̄(t)�s(t, t
′)φ(t ′) dt ′

= h̄(t)Ds(t, t)η(t) − h̄(t)Ds(t, t0)η(t0) +
∫ t

t0

h̄(t)�s(t, t
′)y(t ′) dt ′ (D.4)

where y(t) is defined by η(t) = βm(φ(t)+y(t)). Then, integral over t of this expression gives

1

2
Ds(t, t)(η

2(t1) − η2(t0)) −
∫ t1

t0

h̄(t)Ds(t, t0)η(t0) dt + term proportional to y(t)

where Ds(t, t) is assumed to be independent of t. On the other hand,

−
∫ t1

t0

h̄(t)h(t) dt = −h(t1)η(t1) + h(t0)η(t0) + βm(�(h(t1))

−�(h(t0))) + βm(y(t1)h(t1) − y(t0)h(t0)) − βm

∫
dy(t)

dt
h(t) dt (D.5)
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where

�(h(t)) =
∫

φ(t)
dh

dt
dt. (D.6)

Note �(h) = ln cosh(βh)/β for φ(t) = tanh(βh(t)). In these expressions, h(t) with
t0 < t < t1 disappears except the last term of (D.5). Now we assume

L(t0) = 1
2Ds(t0, t0)η

2(t0) − h(t0)η(t0) + βm�(h(t0)). (D.7)

Then, h(t0)-dependence in L(t1, t0)+L(t0) disappears except y(t0)h(t0) which gives y(t0) = 0
by the integral over h(t0). Similarly, we have dy(t)/dt = 0 by the integral over h(t) with
t0 < t < t1. Thus, we have y(t) = 0.

Collecting all terms, we find the same h(t1)-dependence for L(t1) as L(t0). The expression
L(t) implies that the effective field distribution is given by

p(x) = 1

z
exp

(
−1

2
x2 + βm�(

√
Ds(t, t)x)

)
(D.8)

where x = h/
√

Ds(t, t) and z is a normalization constant.
The argument in this appendix implies that the relation 〈φ(t)h̄(t ′)〉 = βm〈φ(t)∂t ′φ(t ′)〉

holds under the integral over h(t).

Appendix E

This appendix is devoted to some calculus of the function

G0(t, t
′) = g0θ(t − t ′)

ϕ′(t ′)
ϕ(t)

, (E.1)

where ϕ(t) is an increasing function of t. A short calculation gives

G2
0(t, t

′) = g2
0

∫ t

t ′

ϕ′(t ′′)
ϕ(t)

ϕ′(t ′)
ϕ(t ′′)

dt ′′

= g2
0 ln

(
ϕ(t)

ϕ(t ′)

)
ϕ′(t ′)
ϕ(t)

.

For general n, we obtain the relation

Gn
0(t, t

′) = (−1)n

(n − 1)!
gn

0

(
ln

ϕ(t ′)
ϕ(t)

)n−1
ϕ′(t ′)
ϕ(t)

. (E.2)

Using this expression, we have

G0

1 + aG0
(t, t ′) = g0

ϕb(t ′)
ϕb(t)

ϕ′(t ′)
ϕ(t)

(E.3)

where b = ag0. For large enough t, the t ′-integral of the right-hand side becomes∫ t

0

G0

1 + aG0
(t, t ′) dt ′ = g0

1 + ag0
, (E.4)

by assuming ϕ(0)/ϕ(t) ∼ 0.
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